More on two-sided grammar

Let us expand the idea of two-sided (from the analytic/synthetic duality standpoint) grammatical analysis: consider, for example, ‘beaucoup et souvent’ (a lot and often) in the sentence ‘il mange beaucoup et souvent’ (he eats a lot and often). Analytically, ‘beaucoup et souvent’ is composed of and adverb (‘beaucoup’, a conjunction (‘et’) and another adverb (‘souvent’). But synthetically, ‘beaucoup et souvent’ is an adverb, the structure of which is ADVERB+CONJUNCTIONCORD+ADVERB, according to the meta-rule ADVERB = ADVERB+CONJUNCTIONCORD+ADVERB . In the same way, ‘beaucoup mais souvent’ (a lot but often) is also, from a synthetic point of view, an adverb. Analogously, ‘rarement ou souvent’ (rarely or often) is also an adverb, from a synthetic viewpoint. In the same way, ‘rarement voire jamais’ is also a synthetic adverb. This leads to considering ‘even’ as a conjunction of coordination.

Now it is patent that we can expand on that. As hinted at earlier, it seems some progress in rule-based machine translation (we should better speak of, say, ‘human-like MT, since it mimics human reasoning) requires revolutionizing grammar.

Posted in blog | Tagged , , , | Leave a comment

New version on Android Playstore

The application now changes its name on the Android Playstore, and becomes “Traduttore corsu”: the name is not very original, let’s face it, but at least it is easy to understand. “Traduttore corsu” is dedicated especially to the translation from French to Corsican. So we are leaving aside for the moment this beautiful word “okchakko” from the language of the Choctaw Indians.

To find the application Traduttore corsu on Google Play, you have to search with “traduttore_corsu”, because there is a known “bug” in Google Play that means that with “corsu” or “traduttore”, you cannot find the application.

Posted in blog | Tagged , , , , , , , , | Leave a comment

Some advance in polymorphic disambiguation

Just powered the new engine (prototypal, not yet transferred to the API which is used both by the current site translator and the Android application) and made a few tests: it works! Let us take an example with French ‘en fait’: ‘en fait’ (in fact, actually, difatti) from the viewpoint of two-sided grammar is synthetically an adverb, made up – analytically – of a preposition followed by a singular noun. ‘en fait’ is polymorphic in the sense that it may also be part of the prepositional locution ‘en fait de’ (in fact of, in fatti di). Alternatively, ‘en fait’ may also be a pronoun (‘en’, it, ni) followed by the present tense (‘fait’, faci) of the verb ‘faire’ (makes) at the 3rd person of the singular. So, ‘en fait’ is highly ambiguous and context-sensitive.

As the above screenshot illustrates, the new engine handles adequately the three kinds of ‘en fait’. It could be kind of a breakthrough with regard to rule-based translation, since it is a well-known weakness of this type of MT implementation. Presumably, this progress on polymorphic disambiguation opens the path to some 95% or 96% scoring.

Posted in blog | Leave a comment

Follow-up to Autonomous MT system

Closely related to my previous post on autonomous MT systems is the article on the fact that Researchers have developed a machine-learning system capable of deciphering lost languages.

Posted in blog | Leave a comment

Autonomous MT system

Let us speculate about what could be an autonomous MT system. In the present state of MT we provide rules and dictionary to the software (rules-based translation) or we feed it with a corpus regarding a given pair of languages (statistical MT). But let us imagine that we could do otherwises and build an autonomous MT system. We provide the MT system with a corpus regarding a given source language. It analyses, first, the thoroughly this language. It begins with identifying single words. It creates then grammatical types and assigns then to the vocabulary. It also identifes locutions (adverbial, verbal, adjective locutions, verb locutions, etc.) and assigns them a grammatical type. The MT system also identifies prefixes and suffixes. It also computes elision rules, euphony rules, etc. for that source language.
Now the autonomous MT system should, second, do the same for the target language.
The MT system creates, third, a set of rules for translating the source language into the target one. For that purpose, the MT system could for example assign a structured reference to all these words and locutions. For instance, ‘oak’ in English refers to ‘quercus ilex’, ‘cat’ refers’ to ‘felis sylvestris’. For abstract entities, we presume it would not be a trivial task… Alternatively but not exclusively, it could use suffixes and exhibit morphing rules from the source language to the target one.

Is it feasible or pure speculation? It could be testable. Prima facie, this sounds like a different approach to IA than the classical one. It operates at a meta-level, since the MT system creates the rules and in some respect, builds the software.

Posted in blog | Tagged , , | 1 Comment

On the statistical/rule-based divide regarding MT

The classical divide with regard to MT separates statistical from rule-based MT. But this divide is not as clear-cut as one could think at first glance. For rule-based MT can operate statistically. Let us take an example, concerning the disambiguation of French ‘est’: it can be translated either as is or as east, depending on the context. Defining the rules for disambiguating ‘est’ can be somewhat complicated. A rule-based MT could then define a few rules that would cover 90% of the cases, and for the remaining 10%, it could apply a closure rule that translates ‘est’ into is inconditionnally. Such rule would be based on the statistical fact that most often, ‘est’ translates into is and not into east. Such rule may succeed in most of the cases. As we see it, such rule is statistical by essence. Hence the conclusion, the statistical/rule-based divide regarding MT is not as as clear-cut as one could think prima facie. For a disambiguating system for rule-based MT could be built with closure rules of this type, that would ooperate statistically.

Posted in blog | Tagged , | Leave a comment

Priority pairs for endangered languages

Let us discuss the question of priority pairs with regard to endangered languages. It consists of the most wanted translation pairs for a given endangered language, in keeping with the main language with which it is associated. To take an example: French-Corsican is the priority pair for Corsican language. In the same way, Italian-Gallurese is the priority pair for Gallurese language, etc. Now expanding on that idea, priority pairs are:

  • Corsican: (i) French-Corsican (ii) Italian-Corsican (iii) English-Corsican
  • Sardinian Gallurese: (i) Italian-Gallurese (ii) English-Gallurese
  • Sardinian Sassarese: (i) Italian- Sassarese (ii) English-Sassarese
  • Sardinian Logodurese: (i) Italian-Logodurese (ii) English-Logodurese
  • Sicilian: (i) Italian- Sicilian (ii) English-Sicilian
  • Manx: (i) English-Manx
  • Munegascu: (i) French-Munegascu (ii) Italian-Munegascu (iii) English-Munegascu
Posted in blog | Tagged , | 1 Comment

More on two-sided grammatical analysis

Let us give some further examples of two-sided grammatical analysis:

  • “à dessein” (purposedly), “à volonté” (at will), “à tort” (mistakenly): from an analytical standpoint, these are prepositions followed by a singular noun. From a synthetical viewpoint, they are adverbs (adverbial locutions).
  • “à jamais” (forever): from an analytical standpoint, it is a preposition followed by an adverb. From a synthetical viewpoint, it is an adverb (adverbial locution).
  • “à genoux” (on my/his/her/… knees), “à torrents” (in torrents): from an analytical standpoint, these are prepositions followed by a plural noun. From a synthetical viewpoint, they are adverbs (adverbial locutions).
Posted in blog | Tagged , , | 1 Comment